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Abstract: Based on an up-do-date literature data, we consider an empirical trend between the energy of the spin-

forbidden A,-'E transition of the octahedrally coordinated Ni** ions and a new nephelauxetic parameter 8, =

,\/(B/BO)_ + (C/CO)_ (B, C (B,, C,) are the Racah parameters of Ni’" ions in a crystal(free state) , respectively).

It is demonstrated that the energy of the Ni*" 'E state is a linear function of the 8, parameter. These findings prove im-
portance of a simultaneous consideration of reduction of both Racah parameters B and C due to the nephelauxetic ef-
fect. Such an approach is more accurate in estimating the energy position of the 'E level. The commonly used nephe-
lauxetic ratio 8 = B/B,, which completely ignores the reduction in the values of the Racah parameter C, is not accu-
rate enough for this purpose. The collected in the present paper experimental data and their analysis can be useful for

researchers working with the crystalline materials doped with Ni** ions.
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1 Introduction

Theoretical and experimental studies of the
transition metal (TM) ions spectroscopic properties
in a free state and in solids are still actively being
performed, which can be readily explained by numer-

. . . . -3
ous applications in science and technology'™.

In
particular, the TM ions with an unfilled 3d electron
shell are of special importance. These ions can be
stabilized in solids in different oxidation states and
in different coordination, and this circumstance con-
tributes to the variety and complexity of the optical
spectra of these ions in various crystalline materials.
Since the 3d electron shell is the outer one, its elec-
trons strongly interact with nearest neighbors in the
crystal lattice. The overall appearance of the absorp-
tion and luminescence spectra of these TM ions is
determined by a combination of the spin-allowed
broad emission bands and narrow spin-forbidden
peaks. The former ones are used for getting tunable
laser generation'”, whereas the latter ones are impor-

|, as well as for lasing (like ruby la-

tant for lighting™”
ser that operates on the sharp spin-forbidden *E-‘A,
emission transition of Cr* ions).

One of those 3d TM ions is a divalent nickel,
Ni*", with its 3d" electron configuration. An interest
to this ion has been revived recently because of its
infrared emission in the second (1 000-1 350 nm)
and third (1 550-1 870 nm) biological windows""",
which facilitates applications of these ions in optical
thermometry and bioimaging.

The Ni** electron configuration(3d*) in terms of
the number of allowed states is equivalent to the 3d’
electron configuration. Both configurations have 45
allowed microstates, which obey the Pauli exclusion
rule. These 45 states produce five LS terms, whose
properties are summarized in Tab. 1. In that table

the standard **'L notation is used, where S and L

stand for the total spin and orbital momenta, respec-
tively. These five terms make the energy level
scheme of a free ion.

The free ion’s energy levels split, when such an
ion is placed into a crystal field. The splitting pattern
depends on the symmetry properties of the crystal lat-
tice site occupied by an impurity ion. An analysis of
the energy levels schemes of the TM ions in crystal
field of cubic symmetry can be performed with the
help of the so-called Tanabe-Sugano diagrams'?.
Three main parameters are needed for this purpose:
the crystal-field strength Dg(which describes the crys-
tal field effects), and two Racah parameters B and C
(which determine the energy intervals between the
free ion terms due to the Coulomb interaction between
the electrons in the unfilled electron shell). The hori-
zontal axis in all such diagrams is the Dg/B ratio, the
vertical axis is the energy E of the split states in terms
of the Racah parameter B(or the E/B ratio), and the di-
agrams are plotted for a fixed C/B ratio.

Fig. 1 depicts the Tanabe-Sugano diagram for a

3d* ion in an octahedral crystal field.

Tab.1 Symbols, degeneracy and energies of the LS terms
of the 3d® electron configuration. The ground term
energy is taken as zero

Orbital Total Energy(in terms
Term
degeneracy degeneracy of Racah
symbols
20+1 (2L+1)x(2S+1) parameters B, C)
F (L=3) 7 21 0
P (L=1) 3 9 158
'D (L=2) 5 5 5B +2C
'G (L=4) 9 9 12B +2C
'S (1=0) 1 1 22B+17C

When Dg/B ratio is equal to zero, the free ion’s
energy level scheme is restored. When Dg/B>0, the
energy levels are split, and the split levels depend

on the Dg/B value. It can be noted, however, that



559 1

BRIK Mikhail G, et al. : Spectroscopic Properties of Ni** Tons in Octahedral Complexes 1461

the energy separation between the ground state spin-
triplet *A, and the first spin-singlet 'E state is practi-
cally independent of the crystal-field strength. More-
over, at some Dq/B value the first excited spin-triplet
state °T, and the first spin-singlet 'E intersect with
each other. This allows to consider two special cases:
(1) a weak crystal-field, where the first excited
state’T, originates from the same °F term as the
ground state *A, and, (2)a strong crystal-field, where
the first excited state is 'E, which comes from the 'D
term of a free ion. The D¢/B value, at which the en-
ergies of the *T, and 'E states are equal, is a separa-
tion between these two situations, as shown by a ver-

tical dashed line in Fig. 1.

C/B=4.5 'A,
70

.

Weak crystal field Do/B Strong crystal filed
Fig.1 Tanabe-Sugano diagram for anion with the 3d* elec-
tron configuration in an octahedral crystal-field. The
spin-triplet and spin-singlet states are shown by the

solid and dashed lines, respectively.

Since the energy of the 'E state is very close to
that of the 'D free ion’s term, it is possible to as-
sume that only two Racah parameters B and C are
needed to describe its energy position. The Racah
parameters of the TM ions in crystals are considerably
reduced relative to their “free ion” counterparts

due to the so-called nephelauxetic effect"”; the de-

gree of such a reduction depends on the peculiari-

ties of the chemical bonds between the TM ions and
ligands. The Racah parameters are reduced greatly
in the covalent crystals, and their reduction is not so
pronounced in the ionic compounds. As a result, the
'E state will be lowered in covalently bonded sys-
tems and will be located higher in ionic crystals.

This observation allowed to introduce a new pa-
rameter 3, to the description of the spin-forbidden

el 14-20
transitions "

It has been shown that the energy of
the spin-doublet °E of the Mn" and Cr’* ions (or the

'E state of the Ni** ions) is a linear function of this

2 2
new parameter 3, = /(B/Bo) + (C/CO) (where B

and C are the Racah parameters in the crystal and B,
and C,are the corresponding free ion’s values). In
the present paper we give an extended overview of
the Ni*" spectroscopic properties (in the octahedral
coordination), based on the recent publications, and
demonstrate this linear behavior.

The collected in the present paper experimental
data on the Ni*-doped solids provide a valuable
source of reference information for the experimental-
ists, whereas the established linear trend between
the 'E level position and new parameter 8, allows for
a meaningful estimation of the Ni’" spectroscopic

properties in new hosts.

2 Analysis of Spectroscopic Data on
The Spin-forbidden *A,—'E Absorp-

tion Transition of Ni** Ions in Solids

Tab. 2 contains the values of the Racah parame-
ters B and C for Ni*" ions in various solids. In addi-
tion, the energetical positions of the Ni** 'E state
(calculated from the crystal field theory) and mea-
sured experimentally are also listed, along with the

corresponding literature references.

Tab.2 The main spectroscopic parameters related to the Ni** 3AZH'E transition in various crystalline solids. B, =

[ 2 2
J(B/B)) (€ /€,) . B=1068 em™, C,;=4 457 cm ™"

Position of the 'E level/cm™

-1 -1
Crystal Blem Clem A Calculated  Experimental  Calc., Eq.(1) ftef.
AgBr 708 2615 0. 885 27 10 223 10 700 10 765 [22]
AgCl 807 3141 1.033 25 12 206 12 470 12 411 [23]
ALO, 900 4250 1.272 56 15 009 15 840 15072 [24]
B-BaB,0, 850 3500 1.118 08 13 351 — 13 354 [25]
BaLiF, 1062 3865 1.319 39 15 504 15 504 15593 [26]
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Tab.2(continue)

Position of the 'E level/cm™
Crystal Blen™ Clem” P Calculated  Experimental  Calc., Eq.(1) fRef.
Ca,Sc,Ge,0 935 3503 1.176 51 13 841 — 14 004 [27]
CdBr, 675 2975 0.919 24 11963 12 104 11 143 [28]
CdCl, 750 3150 0.996 32 13 147 13 065 12 000 [28]
Cdl, 730 3450 1. 032 65 12 419 12 450 12 404 [29]
CsCdBr, 776 3041 0.996 39 11 781 11780 12 001 [30]
CsCdCl, 799 3142 1.027 67 12132 12 700 12 349 [31]
CsMgBr, 782 3026 0.998 54 11 800 11 800 12 025 [30]
CsMgBr, 886 3952 1.214 27 14 555 14 700 14 424 [32]
CsMgCl, 868 3 869 1. 189 15 14 435 — 14 145 [32]
CsMgl, 879 3918 1.204 22 14 346 — 14 312 [32]
KMgF, 950 3990 1.262 15 247 15 156 14 955 [33]
KNiF, 952 4188 1.295 18 15002 15 454 15324 [34]
KZnF, 880 3 696 1.169 01 13 891 - 13 921 [35]
K,ZnF, 1028 3794 1.284 96 15061 15313 15210 [36]
LiCl 830 3980 1.1838 14 048 14 330 14 085 [37]
LiGa,0, 881 3225 1.097 29 12 986 12 987 13123 [23]
a-Lil0, 913 4069 1.250 71 15304 — 14 829 [38]
LiNbO, 816 3224 1.052 15 12 120 12 120 12 621 [39]
MgALO, 865 3254 1.090 42 13002 12987 13 047 [40]
MgBr, 800 3200 1.037 58 12274 12 200 12 459 [41]
Mgk, 995 4192 1.323 85 15583 15 600 15 643 [23]
MgGa,0, 869 3150 1.077 76 12 814 12 870 12 906 [42]
MgO 935 3330 1. 150 94 13 196 13 535 13 720 [43]
20M00,-80Te0, 780 3675 1.101 48 13222 13 440 13170 [44]
NiJ(Bol)z, 2a site 915 3797 1.208 21 9611 — 14 357 [45]
Ni,(BO,),, 4fsite 871 2964 1.052 31 8728 — 12 623 [45]
NiBr, 763 2772 0.947 21 12 550 — 11454 [46]
NiCl, 785 4 045 1.167 87 13907 13 800 13 908 [46]
NiCL(H,0), 928 3764 1.2117 14 359 14 803 14 395 [47]
NiF, 697 4035 1.116 03 13799 — 13 331 [48]
Nil, 646 3851 1.054 71 11171 11 165 12 649 [46]
RbCaF, 1034 3816 1.292 44 15 040 15 000 15293 [49]
RbCdF, 950 4 000 1.2636 14 075 — 14 972 [50]
WO,-TeO, 958 3330 1.167 4 13 831 — 13 903 [51]
ZAS 940 3919 1.244 11 14 124 14 124 14 756 [52]
ZLKB1 770 3250 1. 025 44 12 294 12 269 12 324 [53]
ZLKB2 765 3200 1.014 18 12 126 12 162 12 199 [53]
ZLKB3 770 3260 1.027 03 12 284 12 315 12 342 [53]
Z1L.KB4 790 3250 1. 038 69 12 404 12419 12471 [53]
ZLKB5 790 3200 1. 030 84 12 308 12311 12 384 [53]
ZLNB1 780 3250 1. 032 04 12 334 12297 12 397 [54]
ZLNB2 795 3290 1.048 33 12 521 12 623 12578 [54]
ZLNB3 800 3285 1. 050 87 12 544 12 575 12 607 [54]
Z1.NB4 810 3285 1. 057 56 12614 12 623 12 681 [54]
ZLNB5 810 3285 1. 057 56 12616 12 575 12 681 [54]
ZnF, 972 3586 1.214 76 14 162 — 14 429 [55]
Zn0-CdS nanocomposite 820 3250 1.058 88 12 621 12 626 12 696 [56]
ZnSiF,-6H,0 932 4155 1.276 95 15239 — 15121 [57]

Notes: The chemical compositions of the glasses listed in the table are as follows: ZAS glass: 58Si0, + 21Zn0 + 10A1,0, + 5Ti0, + 3Ga,0, + 3K,0;
ZLKB1: 19.9Zn0 + 5Li,0 + 25K,0 + 50B,0, + 0.1NiO; ZLKB2: 19.9Zn0 + 10Li,0 + 20K,0 + 50B,0, + 0.1NiO; ZLKB3: 19.9Zn0 + 15Li,0 +
15K,0 + 50B,0, + 0.INiO; ZLKB4: 19.9Zn0 + 20Li,0 + 10K,0 + 50B,0,+ 0.1NiO; ZLKB5: 19.9Zn0 + 25Li,0 +5K,0 + 50B,0, + 0.INiO; ZL-
NB1: 19.9Zn0 + 5Li,0 + 25Na,0 + 50B,0, + 0.INiO; ZLNB2: 19.9Zn0 + 10Li,0 + 20Na,0 + 50B,0, + 0.INiO; ZLNB3: 19.9Zn0 + 15Li,0 +

15Na,0 + 50B,0, + 0.1NiO; ZLNB4: 19.9Zn0 + 20Li,0 + 10Na,0 + 50B,0, + 0.1NiO; ZLNBS: 19.9Zn0 + 25Li,0 + 5Na,0 + 50B,0, + 0.INiO.
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It is easy to see from the data presented in Tab.
1 that all listed parameters vary in wide ranges.
Thus, the value of B varies from 646 cm™ in Nil, to
1 062 cm™ in BaLiF,, the value of C changes from
2615 cm™ in AgBrto 4 250 cm™ in AL,O,and the en-
ergy of the 'E state is in between 10 700 cm™ in AgBr
and 15 840 cm™ in ALO,.

Such wide limits can be explained by differences
in chemical bonding: in highly covalent iodides and
bromides the nephelauxetic effect is strong and the
Racah parameters are reduced considerably. At the
same time, the highly ionic fluorides are character-
ized by a weaker nephelauxetic effect and, corre-
spondingly, greater values of the Racah parameters.
Therefore, the degree of covalency of the chemical
bonds between the Ni** ions and ligands is the primary
reason for the observed variations of the spectroscop-
ic parameters in Tab. 1. The data in the “calculat-
ed” column correspond to the values obtained from
the Tanabe-Sugano matrices in the cubic crystal
field approximation. Since the Ni** sites very often
are characterized by a lower symmetry (trigonal or
tetragonal ), such calculated values can deviate from
the experimental data.

Fig. 2 shows the variation of the experimental

positions of the Ni*'E state against the S, =

\/(B/Bo)z + (C/CO)2 parameter.

-1

16000 1

15000 A . >
E=920+111218,R"=0.903 _~

14000 1
13000 1
12000 1

11000 A

10000 S . . . . |
08 09 1.0 1.1 12 13 14

B,

Fig.2 Experimental position of the Ni** 'E state(symbols) versus

Experimental position of the 'E level/cm

2 2
the B, = /(B/BU) +(C/CU) parameter. The solid

line is the fit to the experimental data, the dashed
lines are shifted up-/down-ward by 407 c¢cm™, which
is the root-mean-squared deviation between the fit

line and experimental data. See text for further details.

The data points were fitted to the linear function

E('E) =920+ 111218, (1)
the value of the correlation coefficient R® is rather
high (0. 903), which indicates a good quality of the
fit.

To assess the quality of the fit and variance of
the data presented, we calculated the energy of the
Ni*" 'E state using Eq. (1) in the various compounds
that are listed in Tab. 1 and then determined the root-

mean-squared deviation

- =1 , 2
o= N (2)

where E,  jand E,;, ) are the corresponding exper-
imental value and the calculated with the help of
Eq. (1). The numerical estimations returned the value
=407 cm™'. Two dashed straight lines in Fig. 1 are
parallel to the fit line (Eq. (1)) and correspond to its
upward/downward shift by the value of o. It should
be noted that this value is of the order of magnitude
of the phonon frequencies on solids and practically
all data points in Fig. 1 are within the +o interval from
the fit line. However, some data points, which corre-
spond to Nil,, CdBr,, CdCl,, AL,O, compounds are
outside of that area. The first three halides in this
group are characterized by a layered structure and

the chemical bonds are highly covalent.

E=3301+126448, R>=0.728
16000

15000 A
14000
13000 A
12000

11000 A

10000 T T T T T 1
0.5 0.6 0.7 0.8 0.9 1.0 1.1

Experimental position of the 'E level/cm™

Fig.3 Energy position of the Ni** 'E state (symbols) against
the B = B/B, parameter

To illustrate the validity of our choice of the

2 2
B, = ,/(B/BO) + (C/CU) parameter, we also show

in Fig. 3 the dependence of the experimental energy

position of the Ni** 'E state on the “old” nephelauxetic



1464 ko

¥R 543 &

ratio B = B/B,, which for a long time was consid-
ered as a qualitative measure of covalency. It can be
easily seen from Fig. 3, that the data points are much
more scattered than in Fig. 2. The linear fit returns
a much smaller value of the correlation coefficient
(only 0.728). A similar result was obtained by us
when considering the Mn* ions and dependence of
their ’E level on the same parameter. Therefore, con-
sideration of only one parameter B for the covalency
description is insufficient, and both Racah parame-
ters B and C have to be used when relating the ener-
gies of the spin-forbidden transitions of the TM ions
chemical bonds covalency. Moreover, the present
empirical finding has been confirmed and supported
by our theoretical derivation based on the parameter-
ized Tanabe-Sugano formula of 'E energy level posi-
tion of 3d® ions in octahedral complexes, as shown by
Ref. [19].

We note that the linear relation between the 'E
level and B, parameter holds true for the zero-pho-
non transitions. Quite often identification of the ze-
ro-phonon line(ZPL) position in the TM ions spectra
is not an easy task, since the Stokes and anti-Stokes
vibronic progressions that are observed in the experi-
mental emission/absorption spectra can mask the
true ZPL position. We consider this as an important
factor that can cause deviation of some experimental

data points in Fig. 2 from the straight line determined

References:

by Eq. (1). In addition, such a linear relation can
be also expected to be held for the case of 3d” ions in
tetrahedral complexes because of the electron-hole
complementarity between both 3d* and 3d® electron-

ic configurations.

3 Conclusion

A thorough analysis of the recent publications
on the spectroscopic properties of solids doped with
Ni*" ions allowed to compile a database that collects
the values of the Racah parameters B, C and energetic
positions of the Ni* 'E level. We have re-examined
an empirical trend between the lowest energy spin-

forbidden Ni** *A,-'E transition and a new covalency

2 2
parameter f3, =\/(B/BO) +(C/CO) , which allows

to account for a decrease of both Racah parameters
because of nephelauxetic effect. The B, parameter
describes the covalent effects much better than the
commonly used nephelauxetic ratio 8 = B /B, which
omits the second Racah parameter, C. It is hoped
that the collected in the present paper data and their
treatment will be useful for the description of the

. . P . .
spectroscopic properties of Ni*" ions in solids.

Response Letter is available for this paper at:http://
cjl. lightpublishing. c¢n/thesisDetails#10. 37188/CJL.
20220243.
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